Lesson 3. The Dot Product

1 In this lesson...

- Definition and properties of the dot product
- Dot products and angles between vectors
- Direction angles and direction cosines
- Projections
- Practice with vectors and dot products

2 The dot product

- We know how to multiply a vector by a scalar
- Can we multiply two vectors together? Yes!
- If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, the **dot product** of \vec{a} and \vec{b} is

• Note that $\vec{a} \cdot \vec{b}$ is a scalar

• The dot product of vectors in \mathbb{R}^2 is defined similarly: if $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then

Example 1.

a.
$$\langle -1,7 \rangle \cdot \langle 6,2 \rangle =$$

b.
$$\langle 2, 4, 1 \rangle \cdot \langle -1, 3, 1 \rangle =$$

c.
$$\left(-\vec{i}+3\vec{k}+4\vec{j}\right)\cdot\left(\vec{i}-3\vec{k}\right)=$$

• Properties of the dot product

$$\vec{a} \cdot \vec{a} = |a|^2 \qquad (c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \qquad \vec{0} \cdot \vec{a} = 0$$

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

1

• The dot product behaves very similarly to ordinary products of real numbers

3 Dot products and angles

• The **angle** θ between two vectors \vec{a} and \vec{b} :

- \circ We always take the angle so that $0 \le \theta \le \pi$
- If \vec{a} and \vec{b} are scalar multiples of one another, we say that the vectors are **parallel**
 - \circ If \vec{a} and \vec{b} are parallel, then θ =
- If θ is the angle between vectors \vec{a} and \vec{b} , then
- \Rightarrow If θ is the angle between nonzero vectors \vec{a} and \vec{b} , then

Example 2. Find the angle between vectors $\vec{a} = \langle 2, -1, 3 \rangle$ and $\vec{b} = \langle -3, 2, 5 \rangle$.

- Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\theta = \pi/2$
- Suppose \vec{a} and \vec{b} are nonzero
 - If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b} =$
 - If $\vec{a} \cdot \vec{b} = 0$, then $\cos \theta =$ and so $\theta =$
- \Rightarrow Two vectors \vec{a} and \vec{b} are orthogonal if and only if

Example 3. Show that $2\vec{i} - \vec{j} + 2\vec{k}$ is perpendicular to $5\vec{i} + 2\vec{j} - 4\vec{k}$.

- The dot product measures the extent to which \vec{a} and \vec{b} point in the same direction

4 Direction angles and direction cosines

• **Direction angles** for vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$:

- Again, we take α , β γ always to be in $[0, \pi]$
- Remember that if θ is the angle between \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

• Direction cosines

• Note that we can write $\frac{1}{|\vec{a}|}\vec{a} =$

Example 4. Find the direction angles of $\vec{a} = \langle 2, 1, 3 \rangle$.

5 Projections

• **Vector projection** of \vec{b} onto \vec{a} :

- \circ Denoted by $\operatorname{proj}_{\vec{a}}\vec{b}$
- "Shadow" of \vec{b} onto \vec{a}
- **Scalar projection** of \vec{b} onto $\vec{a} = \underline{\text{signed}}$ magnitude of $\underline{\text{proj}}_{\vec{a}}\vec{b}$
 - Also called the **component** of \vec{b} along \vec{a}
 - \circ Denoted by comp_{\vec{a}} \vec{b}
- The scalar and vector projections can be computed using dot products:

$$\circ \operatorname{comp}_{\vec{a}} \vec{b} =$$

$$\circ \operatorname{proj}_{\vec{a}} \vec{b} =$$

Example 5. Find the scalar projection and vector projection of $\vec{b} = \langle 3, 4 \rangle$ onto $\vec{a} = \langle 2, 1 \rangle$.

Example 6. Draw \vec{a} , \vec{b} , and $\text{proj}_{\vec{a}}\vec{b}$ from Example 5. Is the drawing what you expected?

• The work done by a constant force \vec{F} in moving an object along a displacement vector \vec{D} is defined as $W = (\text{component of } \vec{F} \text{ along } \vec{D})(\text{distance moved})$

 $\Rightarrow W =$

Example 7. A force $\vec{F} = 5\vec{i} - 2\vec{j} + 3\vec{k}$ moves a particle from the point P(2, 0, -1) to the point Q(6, 2, 4). Find the work done.

6	Daga	4:1
6	Prac	tice!

Example 8. Find the scalar projection and vector projection of $\vec{b} = \langle 1, 1, 2 \rangle$ onto $\vec{a} = \langle -2, 3, 1 \rangle$.

Example 9. Find a unit vector that is orthogonal to both (2, 0, -1) and (0, 1, -1).

Example 10. Determine whether the given vectors are orthogonal, parallel, or neither:

a.
$$\vec{a} = \langle 4, 5, -2 \rangle, \vec{b} = \langle 3, -1, 5 \rangle$$

b. $\vec{u} = 9\vec{i} - 6\vec{j} + 3\vec{k}, \vec{v} = -6\vec{i} + 4\vec{j} - 2\vec{k}$