Lesson 3. The Dot Product

1 In this lesson...

- Definition and properties of the dot product
- Dot products and angles between vectors
- Direction angles and direction cosines
- Projections
- Practice with vectors and dot products

2 The dot product

- We know how to multiply a vector by a scalar
- Can we multiply two vectors together? Yes!
- If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, the dot product of \vec{a} and \vec{b} is
- Note that $\vec{a} \cdot \vec{b}$ is a scalar
- The dot product of vectors in \mathbb{R}^{2} is defined similarly: if $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}\right\rangle$, then

Example 1.

a. $\langle-1,7\rangle \cdot\langle 6,2\rangle=$
b. $\langle 2,4,1\rangle \cdot\langle-1,3,1\rangle=$
c. $(-\vec{i}+3 \vec{k}+4 \vec{j}) \cdot(\vec{i}-3 \vec{k})=$

- Properties of the dot product

$$
\begin{aligned}
\vec{a} \cdot \vec{a} & =|a|^{2} & (c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b}) \\
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{a} & \overrightarrow{0} \cdot \vec{a}=0 \\
\vec{a} \cdot(\vec{b}+\vec{c}) & =\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} &
\end{aligned}
$$

- The dot product behaves very similarly to ordinary products of real numbers

3 Dot products and angles

- The angle θ between two vectors \vec{a} and \vec{b} :

- We always take the angle so that $0 \leq \theta \leq \pi$
- If \vec{a} and \vec{b} are scalar multiples of one another, we say that the vectors are parallel
- If \vec{a} and \vec{b} are parallel, then $\theta=$
- If θ is the angle between vectors \vec{a} and \vec{b}, then
\Rightarrow If θ is the angle between nonzero vectors \vec{a} and \vec{b}, then

Example 2. Find the angle between vectors $\vec{a}=\langle 2,-1,3\rangle$ and $\vec{b}=\langle-3,2,5\rangle$.

- Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\theta=\pi / 2$
- Suppose \vec{a} and \vec{b} are nonzero
- If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b}=$
- If $\vec{a} \cdot \vec{b}=0$, then $\cos \theta=\square$ and so $\theta=$ \square
\Rightarrow Two vectors \vec{a} and \vec{b} are orthogonal if and only if

Example 3. Show that $2 \vec{i}-\vec{j}+2 \vec{k}$ is perpendicular to $5 \vec{i}+2 \vec{j}-4 \vec{k}$.

- The dot product measures the extent to which \vec{a} and \vec{b} point in the same direction
\circ

-

\circ

4 Direction angles and direction cosines

- Direction angles for vector $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$:

- Again, we take $\alpha, \beta \gamma$ always to be in $[0, \pi]$
- Remember that if θ is the angle between \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
- Direction cosines
- $\cos \alpha=$
- $\cos \beta=$
- $\cos \gamma=$
- Note that we can write $\frac{1}{|\vec{a}|} \vec{a}=$

Example 4. Find the direction angles of $\vec{a}=\langle 2,1,3\rangle$.

5 Projections

- Vector projection of \vec{b} onto \vec{a} :

- Denoted by $\operatorname{proj}_{\vec{a}} \vec{b}$
- "Shadow" of \vec{b} onto \vec{a}
- Scalar projection of \vec{b} onto $\vec{a}=$ signed magnitude of $\operatorname{proj}_{\vec{a}} \vec{b}$
- Also called the component of \vec{b} along \vec{a}
- Denoted by $\operatorname{comp}_{\vec{a}} \vec{b}$
- The scalar and vector projections can be computed using dot products:
- $\operatorname{comp}_{\vec{a}} \vec{b}=$
- $\operatorname{proj}_{\vec{a}} \vec{b}=$ \square

Example 5. Find the scalar projection and vector projection of $\vec{b}=\langle 3,4\rangle$ onto $\vec{a}=\langle 2,1\rangle$.

Example 6. Draw \vec{a}, \vec{b}, and $\operatorname{proj}_{\vec{a}} \vec{b}$ from Example 5. Is the drawing what you expected?

- The work done by a constant force \vec{F} in moving an object along a displacement vector \vec{D} is defined as

$$
W=(\text { component of } \vec{F} \text { along } \vec{D}) \text { (distance moved) }
$$

$\Rightarrow W=\square$

Example 7. A force $\vec{F}=5 \vec{i}-2 \vec{j}+3 \vec{k}$ moves a particle from the point $P(2,0,-1)$ to the point $Q(6,2,4)$. Find the work done.

6 Practice!

Example 8. Find the scalar projection and vector projection of $\vec{b}=\langle 1,1,2\rangle$ onto $\vec{a}=\langle-2,3,1\rangle$.

Example 9. Find a unit vector that is orthogonal to both $\langle 2,0,-1\rangle$ and $\langle 0,1,-1\rangle$.

Example 10. Determine whether the given vectors are orthogonal, parallel, or neither:
a. $\vec{a}=\langle 4,5,-2\rangle, \vec{b}=\langle 3,-1,5\rangle$
b. $\vec{u}=9 \vec{i}-6 \vec{j}+3 \vec{k}, \vec{v}=-6 \vec{i}+4 \vec{j}-2 \vec{k}$

